Closing Tue: TN 4 (notation practice) Closing Thu: TN 5 (last assignment) Recall:

$$
\begin{aligned}
& T_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(b)(x-b)^{k} \\
&=\frac{\text { if }\left|f^{(n+1)}(x)\right| \leq M, \text { then }}{0!} f(b)+\frac{1}{1!} f^{\prime}(b)(x-b)+\frac{1}{2!} f^{\prime \prime}(b)(x-b)^{2}+\cdots+\frac{1}{n!} f^{(n)}(b)(x-b)^{n} \\
&\left|f(x)-T_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-b|^{\gamma}
\end{aligned}
$$

Entry Task: Find the $7^{\text {th }}$ Taylor polynomial for $f(x)=\sin (x)$, based at $b=0$. And find a bound on the error over the interval $[-3,3]$.

TN 4: Taylor Series

Def'n:
The Taylor Series for $f(x)$ based at b is

$$
\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(b)(x-b)^{k}=\lim _{n \rightarrow \infty} T_{n}(x)
$$

Note:
If

$$
\lim _{n \rightarrow \infty} \frac{M}{(n+1)!}|x-b|^{n+1}=0
$$

then the error goes to zero and x is in the open interval of convergence.

If the limit exists at a particular x, then we say the series converges at x. Otherwise, we say it diverges at x .

The open interval of convergence is the largest open interval of values over which the series converges.

A few patterns we now know:

$$
\begin{array}{ll}
e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots & \Rightarrow \quad e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} \\
\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots & \Rightarrow
\end{array}
$$

These converge for ALL values of x. So the open interval of convergence for each series above is $(-\infty, \infty)$

Visuals of Taylor Polynomials:

1. $f(x)=e^{x}$ as well as $\mathrm{T}_{1}(\mathrm{x}), \mathrm{T}_{2}(\mathrm{x})$, $\mathrm{T}_{3}(\mathrm{x}), \mathrm{T}_{4}(\mathrm{x})$ and $\mathrm{T}_{5}(\mathrm{x})$ are shown:
2. $f(x)=\sin (x)$ as well as $\mathrm{T}_{1}(\mathrm{x})$, $\mathrm{T}_{3}(\mathrm{x}), \mathrm{T}_{5}(\mathrm{x})$, and $\mathrm{T}_{7}(\mathrm{x})$ are shown:

Now consider $f(x)=\frac{1}{1-x}$ based at 0 .
Find the $10^{\text {th }}$ Taylor polynomial.
What is the error bound on $[-1 / 2,1 / 2]$?
What is the error bound on $[-2,2]$?

Graph of $\mathrm{y}=1 /(1-\mathrm{x})$:

$f(x)=\frac{1}{1-x}$ as well as $\mathrm{T}_{1}(\mathrm{x}), \mathrm{T}_{2}(\mathrm{x}), \mathrm{T}_{3}(\mathrm{x}), \mathrm{T}_{4}(\mathrm{x})$, and $T_{5}(x)$ are shown:

Graph of $f(x)=\frac{1}{1-x}$ and $\mathrm{T}_{10}(\mathrm{x})$:

We will know all the following:

$$
\begin{array}{ll}
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots & \Rightarrow \quad \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \\
-\ln (1-x)=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots & \Rightarrow-\ln (1-x)=\sum_{k=0}^{\infty} \frac{1}{k+1} x^{k+1} \\
\arctan (x)=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{7} x^{7}+\cdots & \Rightarrow
\end{array}
$$

The open interval of convergence for all three of these series: $\mathbf{- 1}<\mathbf{x}<\mathbf{1}$.

Sigma Notation Notes

$$
\begin{aligned}
& \text { Definition: } \\
& \sum_{k=a}^{b} f(k)=f(a)+f(a+1)+f(a+2)+\cdots+f(b-1)+f(b)
\end{aligned}
$$

You try: Expand these

$$
\begin{aligned}
& \sum_{i=1}^{3} \frac{(-1)^{i}}{i^{2}} x^{i} \\
& \sum_{k=13}^{15} \frac{(-1)^{(k-12)}}{(k-12)^{2}} x^{k-12}
\end{aligned}
$$

Note: In the examples, above i and k are dummy variables, used to summarize a pattern.

Constants and adding:
Expand then combine

$$
5 \sum_{k=2}^{4} k^{2} x^{k}-6 \sum_{k=2}^{4} \frac{1}{k!} x^{k}
$$

Summary: For adding/subtracting and constant multiples, you can manipulate in the same way you learned to manipulate integrals.

Derivatives and Integrals

 Recall:$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, \quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Thus,
To differentiate a Taylor series \rightarrow change x^{k} to $k x^{k-1}$ To integrate a Taylor series \rightarrow change x^{k} to $\frac{1}{k+1} x^{k+1}$

Example: Find the derivative and general antiderivative of

$$
f(x)=-x+\frac{1}{8} x^{2}-\frac{1}{27} x^{3}+\frac{1}{64} x^{4}-\frac{1}{125} x^{5}
$$

$$
=\sum_{k=1}^{5} \frac{(-1)^{k}}{k^{3}} x^{k}
$$

